Bayesian Methods for Ecological and Environmental Modelling
2-3.30 pm: Session 3 Linear modelling - part 1
3.30-4 pm: Tea & coffee break
4-5 pm: Session 3 Linear modelling – part 2
The core of the scientific process involves:
Inference is the process of estimating models, parameters, and their uncertainties, using data
“Likelihood” and “probability” used interchangeably in common speech.
Likelihood has a specific meaning in statistics:
The mathematically correct way to do inference with conditional probability
Next:
We want to predict one thing (y) on the basis of another (x)
A function that describes a linear relationship between the response, \(y\), and the predictor, \(x\).
\[\begin{aligned} y &= \color{black}{\textbf{Model}} + \text{Error} \\[6pt] &= \color{black}{\mathbf{f(\theta, x)}} + \epsilon \\[6pt] &= \mathrm{intercept} + \mathrm{slope} \cdot x + \epsilon \\[6pt] &= \alpha + \beta x + \epsilon \\[6pt] \theta &= (\alpha, \beta) \\[6pt] \end{aligned}\]
A function that describes a linear relationship between the response, \(y\), and the predictor, \(x\).
\[\begin{aligned} y &= \color{black}{\textbf{Model}} + \text{Error} \\[6pt] &= \color{black}{\mathbf{f(\theta, x)}} + \epsilon \\[6pt] &= \mathrm{intercept} + \mathrm{slope} \cdot x + \epsilon \\[6pt] &= \beta_0 + \beta_1 x + \epsilon \\[6pt] \theta &= (\beta_0, \beta_1) \\[6pt] \end{aligned}\]
\[ \begin{aligned} y &= \color{purple}{\textbf{Model}} + \text{Error} \\[8pt] &= \color{purple}{\mathbf{f(\theta, x)}} + \epsilon \\[8pt] &= \color{purple}{\alpha + \beta x} + \epsilon \\[8pt] \end{aligned} \]
\[\begin{aligned} y &= \color{purple}{\textbf{Model}} + \color{blue}{\textbf{Error}} \\[8pt] &= \color{purple}{\mathbf{f(\theta, x)}} + \color{blue}{\boldsymbol{\epsilon}} \\[8pt] &= \color{purple}{\alpha + \beta x} + \color{blue}{\boldsymbol{\epsilon}} \\[8pt] \end{aligned}\]
\[\begin{aligned} y &= \color{purple}{\textbf{Model}} + \color{blue}{\textbf{Error}} \\[8pt] &= \color{purple}{\mathbf{f(\theta, x)}} + \color{blue}{\boldsymbol{\epsilon}} \\[8pt] &= \color{purple}{\alpha + \beta x} + \color{blue}{\boldsymbol{\epsilon}} \\[8pt] \end{aligned}\]
Regression slopes \(\beta\) are often referred to as effects
When assumptions are not met …
Two practicals
rstanarm
Consider: